
International Journal of Theoretical Physics, Vol. 34, No. 7, 1995 

Nonconservation of the Net Current of Dirac 
Particles in Tolman-Bondi  and 
Robertson-Walker Geometries 
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A straightforward calculation shows that, in contrast to what happens for the 
Dirac equation in the Kerr metric, the net current of particles is not conserved 
in the case of the Dirac equation in the Tolman-Bondi and Robertson-Walker 
space-times. 

1. I N T R O D U C T I O N  

It is well known that the formulation of the Dirac equation can be 
extended to curved space-time by using the notions of covariant derivatives 
and of Pauli generalized ~r-matrices. In particular this can be done by means 
of the spinorial formalism that has been developed after the pioneering paper 
by Newman and Penrose (1962), an account of which can be found in the 
books by Penrose and Rindler (1986) and Chandrasekhar (1983). In the 
following we adopt Chandrasekhar's notations and mathematical conventions. 
According to this formulation, the Dirac equation reads 

~ a  p a  + i l x .  Qa ' = 0 U A A  ' ; ~  

f f~A,Q; A + ip~ ,P  A, = 0 (1) 

Ix, ~ is the mass of the particle and p Z  and Oa' are spinors representing 
the wave function. If i, n, m, m* is the null tetrad frame of the Newman-  
Penrose formalism in a given metric, the generalized a~-matrices are defined by 

1 ( P ) m  *'~ n ~' 
m s 

O'~A, = ~ (2) 
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Associated to the Dirac equation there is the spinorial current 

JAA' = pApA' + QAQA' (3 )  

The connection between the components in the local coordinate basis and 
the spinorial components of the current is expressed by 

J'~ = x/-2tY,~a' J aa' (4) 

The current conservation 

J~  = 0 (5) ;ct 

is a direct consequence of the Dirac equation (1) and the relations (4), (3). 
In connection with the physical interpretation, it is worth noting that 

the positivity of j0 is ensured by the positivity of the matrix (rOA ,. This is 
provided in general by construction from the tetrad frame and it holds true 
in our cases of interest, namely for the Robertson-Walker and Tolman-Bondi 
metrics. In the case of the Kerr metric this property can be checked to hold 
directly from the representation of r given in Chandrasekhar (1983). 

Of course, from the four-dimensional Gauss law, one can give an integral 
form to the conservation law (5). 

However, we are interested here in three-dimensional considerations. 
By a standard result, equation (5) is equivalent to (see, e.g., Schutz, 1990) 

O , ( , , / ~ J  t) = - O ~ ( , , / ~ J  k) (6) 

As a consequence we have the three-dimensional integral relation 

S is the surface surrounding the spatial region V. 
In the case of one-particle theory, a Schr6dinger-like statistical interpreta- 

tion would then follow from (7) by choosing the solution of equation (1) 
such that j h  vanishes at infinity. If, however, the theory is such that particle 
creation is possible, the physical solutions can no longer be chosen to make 
the right-hand side of equation (7) vanish, so that a Schr6dinger-like interpre- 
tation is not possible. 

This is the case for the Dirac equation in the Robertson-Walker metric 
[see Parker (1971); for further developments see Birrell and Davies (1982)] 
and in the Kerr metric (Starobinskii, 1973; Unruh, 1974; Wald, 1976). 

Also in the Tolman-Bondi model there is in principle particle creation, 
this effect being in general a property of the Dirac equation in time-dependent 
gravitational fields (see, e.g., Birrell and Davies, 1982). This is also a conse- 
quence of the fact that the Tolman-Bondi model contains solutions which 
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describe collapsing universes leading to black hole formation (Demianski 
and Lasota, 1973) and it is known that particle creation near black holes 
occurs (Hawking, 1975; Wald, 1975). 

One is therefore interested in the net current of particles, a quantity we 
now denote by ON/Ot. With a suitable choice of V in equation (7) one has 

at dq~ dO x / -~J  r (8) 

j r  is the radial component of the Dirac current. It is a fact that such a quantity 
is conserved in the case of the Dirac equation in Kerr metric. A central role 
is played to that end by the time independence of the metric coefficients and 
by the complete separability of the Dirac equation (Chandrasekhar, 1983). 

It is the object of this paper to show that the net current of particles 
given in equation (8) is not conserved in the Robertson-Walker or in the 
Tolman-Bondi geometry. This seems to be a consequence of the fact that, 
in both cases, the Dirac equation is not separable in its r and t dependences. 
The result could be of interest in connection with the problem of particle 
formation in the early universe of the standard cosmology (Kolb and 
Turner, 1990). 

2. T O L M A N - B O N D I  G E O M E T R Y  

The metric of the Tolman-Bondi geometry is given by 

d s  2 = d t  2 - e r d r  2 - Y2(d02 + sin20 dqb 2) (9) 

where F = F(r, t), Y = Y(r, t) > O. 

For the purposes of the following considerations the explicit expressions 
of the functions F, Y are not necessary. It is sufficient to consider them as 
functions fixed by the underlying cosmological model. For instance, they 
could be given by the solution of the Tolman-Bondi model (Tolman, 1934; 
Bondi, 1947), an account of which in the Newman-Penrose formalism can 
be found in Zecca (1993a). This model consists of a spherically symmetric 
space-time filled with dust matter of zero pressure described, in a comoving 
coordinate system, by the metric (9). 

We assume the null tetrad frame to be given by 

1 
I i -= - - ~  (1, e -F/z, 0, 0) 

1 
n i --- ~ (1, - e  -r/2, 0, 0) 

42 
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1 
m i - (0, 0, 1, i csc 0) 

1 
m *i = (0, O, 1, - i  csc 0) (10) 

,fir 
In terms of  the directional derivatives D = liOi, A = niai ,  8 = miOi, and 8" 
= m*iOi and of  the nonzero Ricci rotation coefficients, the Dirac equations 
assume the form (Chandrasekhar, 1983) 

(D + �9 - p)F1 + (8* - ot)F 2 = iix, Gl 

(A + i~ - ~/)F 2 + (8 - a ) F t  = iix, G2 

(D + �9 - p)G2 - (8 - ec)Gl = i ix,  F2 

(A + IX - ~/)Gl - (8* - a )G2  = ip~,Ft (11) 

where we set pa = (F1, F2), ~ a '  ~ ( - G 2 ,  G1). The nonzero spin coefficients 
corresponding to the tetrad frame (10) have values 

1 _ _  (~., + y '  e - r / z )  P -  v/-~y 

1 
tx = - - ~  (f" - y ,  e-r/z) 

3 = - a  - 

�9 = - ~  - 

(The overdot  and prime denote here 
r.) As usual, owing to the symmetry  
chosen to be of  the form eim 6 ( m  ---- 0 ,  

equations (11) become 

cot 0 

e , f i Y  

t" 
4,,/-2 (12) 

partial derivatives with respect to t and 
of  the metric, the ~b dependence can be 
__- 1, •  ---3 . . . .  ). With this assumption, 

x/-2Y(D + �9 - p)Fa + L-F2  = ilL, YGI x/2 

v/2Y( A + ~ - "/)F2 + L+FI = i ~ , Y G 2 x / 2  

x/2Y(O + �9 - p)G2 - L+GI = itx,  YF2 v/2 

, /-~y(A + ~ - "v)G~ - L - G z  = i ~ ,  YF, , / -2  

where 

(13) 

1 
L +- = O0 ~- m csc 0 + ~ cot  0 
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and the F ' s  and G's are now functions of r, 0, t. The 0 dependence can be 
separated by using the Chandrasekhar-Teukolski method (see, e.g., Chandra- 
sekhar, 1983). With 

El = fl(r, t)Sl(0), F= = f2(r, t)S2(0) 

Gz = f=(r, t)&(O), G= = f~(r, t)S2(0) (14) 

inserted in equation (13), one gets for Sl, $2 the angular equations 

L-S= = -hSb  L+SI = kS2 (15) 

k is a separation constant. By setting 

H l = Y f b  H2= Yf2 

after the separation, the functions Hi, H2 are found to satisfy 

DH, + eHI = (ip,, + h ) -;--Ha 

AH2 + ~H2 = ilL, y -  �9 Hi (16) 

A detailed solution of equation (15) can be found in Montaldi and Zecca 
(1994). For the present purposes it is sufficient to recall that k is real and 
that if I ml >- 1, then h 2 = (l + 1/2) 2 , l = 1, 2, 3 . . . . .  with S1, S= being 
essentially the Jacobi polynomials, while if m = 0, then h 2 = (l + 1) 2, l = 
0, 1, 2, 3 . . . . .  and $1, $2 are essentially the Tchebychef polynomials of the 
second kind. 

In general equations (16) cannot be separated in the r and t dependences. 
This in particular holds in the Tolman-Bondi  model, where the explicit 
solution Y itself (see, e.g., Demianski and Lasota, 1973) cannot be written 
as a function of r times a function of  t. 

In order to perform the calculation of the expression (8), we have 
preliminarily 

~r~A, -- 2 1 

jr__ e-F/2 II (In'l= -1I-/212) 
2 ([51 + 15212) y2 (18) 

Then we obtain 

ON 
o t  = 2~([H21=- !H'12) (19) 
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where the S functions have been normalized to one. To see that the term on 
the right-hand side of equation (19) is not constant, consider the expressions 

a = [H212-  Ia l l  2, B = In21 z + Inl l  = (20) 

By making equations (16) explicit with respect to Or, Or, one gets 

2x/~ [H, H 2 ( i ~ , Y -  ~ )  + c.c. ] - 2v/2eA + e-r/2B ' (21) A = - -  U 

and 

A' = er/2(2x/~eB + B) (22) 

the component of the spinor of the Dirac equation (1) satisfies a Since 
Klein-Gordon-like equation, it has a continuous dependence together with 
its derivatives on the initial data (Wald, 1984). Suppose now A = A' = 0; 
then from Eq. (22), B comes out to be a function determined by the given 
e structure. But this is impossible as a consequence of equation (21) and the 
arbitrariness of the initial data of H1, Hz in the Dirac equation. 

3. TH E R O B E R T S O N - W A L K E R  G E O M E T R Y  

The metric is given in this case by 

d__r2 + r2(d02 + sin20 d~b2)] ds2 = dt2 - R2(t) 1 - ar 2 (23) 

Also here the function R(t) is understood to be a fixed function given by the 
underlying cosmological model, which could be, for instance, the standard 
cosmology of the Friedman-Einstein model (see, e.g., Weinberg, 1972). 

Here we choose as null tetrad frame 

1 ( (1-ar2)l /2 
l i=---~ 1, , 0 , 0  

1 m i - (0, O, 1, i csc 0) 

m *~ - (0, 0, 1, - i  csc 0) = m' (24) 
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The corresponding nonzero spin coefficients were obtained in Montaldi and 
Zecca (1994) to be 

P -  x/~1 [RR _' + ( 1 - a r 2 )  ll2]r_R J 

1 [ ~  ( 1 - a r 2 )  '12] 

~z = - ~  rR J 

3 = 
cot 0 

2,j2rR 

R 
= - Y  - 2 ~ / ~ R  ( 2 5 )  

With these values and by mimicking the method of the previous section, we 
can separate part of the wave function of  the Dirac equation (11) by the 
position (14), obtaining in this way exactly the same results (15). 

For the r, t dependences we are left with the analog of equation (16): 

DHI + e_I4~ = (itx, - - -  
rR 

AH2 + ~H2 (iD, + h ~ )  = - -  HI 
rR 

(26) 

where now HI = rRfb H2 = rRf2. 
By using the explicit expression of e and of the directional derivatives 

D = 2-u2[0t + (1 - ar2)l/Z/(rR)Or] and A = 2-1/2[0 t - (1 - ar2)l/Z](rR)Or}, 
it is not difficult to show that the solutions H~, H2 of equations (26) cannot 
be separated in the r and t dependences. 

With the notations of the previous section, we have 

(~a'  (1 -- ar2) 112 
- (o_~ (27) 

j r _  (1 - ar2) '/2 ]H,I: - I H : I  2 
2R (IS'I :  + Is:12) r2R z (28) 

so that also here we have 

ON 
- 2w(IH2[ 2 - [H~ [2) .~_ 2~rA(r, t) (29) 

Ot 
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The equations corresponding to (21), (22) are essentially the same: 

A = ~ H2H, - i i * , rR  + c.c. - 2v/2~.A + 
(1 - ar2) 1/2 

R 
B t 

(30) 

A' - R (2v/2eB + B) = a (1 (1 - ar2)  1/2 ~ - -  ~ r 2 ) l / 2  (31) 

and the conditions A = A' = 0 are not possible, by the same argument as 
in the previous section. This can be seen here also in an elementary direct 
way. Indeed, equation (31) can be separated [in contrast to the case of  equation 
(22)] by 

A = f ( r ) T ( t ) ,  B = g ( r ) S ( t )  (32) 

to get the relation 

g = kf'(1 - ar2)  1/2 (33) 

k is the separation constant. If  now A' = 0, then by equation (33), B = 0 
and hence H1 = H2 = 0. 
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